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Anomalous Diffusion Limit Induced on a Kinetic
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Using a compactness argument based on the velocity averaging lemma of Golse
et al., it is shown that the limiting behavior of a kinetic (linearized BGK) gas
model confined between two plates with Maxwell boundary conditions, when
the distance between the plates goes to zero, under a suitable anomalous
scaling, is diffusive. We do not require the use of central limit theorems as in the
method of Bo� rgers et al.

KEY WORDS: BGK; nonequilibrium steady states; anomalous diffusion
limit.

1. INTRODUCTION

Fluid dynamical descriptions of gases depend on the assumption that the
mean free path of a fluid particle (the average distance traveled between
collisions) is much smaller compared with the macroscopic length scales
of interest. When this assumption breaks down one may abandon fluid
dynamics in favor of a kinetic theory of dilute gases like that of the
Boltzmann equation. The gas is then described by single particle phase-
space densities rather than fluid dynamical variables like the spatial den-
sities of mass momentum and energy. The evolution of these phase-space
densities is then governed by kinetic equations.

This paper will treat the case of a simple model of rarefied gas
dynamics, in the region located between two infinite flat, parallel surfaces,
separated by a small distance h. Gas molecules are assumed to move with
constant velocities, and to be reflected according to Maxwell's boundary
condition(10) upon impact with the bounding surfaces.
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The purpose of this paper is to show how a rough boundary described
by a diffusive boundary condition may generate a diffusion process in a
fluid. In contrast with previous results obtained by probabilistic arguments
(cf. ref. 7), our proof relies as much as possible on known physical estimates
(like conservation laws or the entropy inequality).

The existence of diffusion limits has been demonstrated for other
transport problems. Some important examples are contained in the papers
of refs. 2, 3, 7, and 12. Reference 12 considers ``Arnold's Cat Maps'' model
as a nice example of a diffusion approximation of a reversible dynamics.
In ref. 3, the gas surface interaction was modelled by a boundary condition
reminiscent of Maxwell's total accommodation condition; the purpose of
this condition was to bias the collision process at the boundary so as to
avoid the production of too many particles travelling in directions nearly
parallel to the plates. In ref. 7 the genuine Maxwell accommodation con-
dition was treated by probabilistic techniques, and it was shown there
that, as the distance between the plates tends to zero, the particles evolve
according to an anomalous diffusion process (one calls a diffusion process
``anomalous'' if the mean square displacement grows like a nonlinear func-
tion of the time variable (in the long time limit). In the case of a classical
diffusion process (such as the classical Brownian motion) the mean square
displacement of a particle is proportional to the corresponding time in the
long time limit)); In the case considered in ref. 7, the particles travelling
in directions nearly parallel to the plates were responsible for the anoma-
lous scaling. The effect of biasing the collision process as was done
in ref. 3 eliminated this difficulty, thus leading to a classical diffusion
approximation.

In a recent work, (15) F. Golse gives a proof of the result announced in
ref. 7 without mentioning probabilitic interpretation of the accommodation
boundary condition. His exposition is entirely based on a priori estimates
on PDE's. The difference between his approach and ref. 7 is the following:
In ref. 7 an explicit representation for the solution of the transport problem
is given and analyzed with the help of some limit theorems from probability
theory; in ref. 15, F. Golse does neither need any such representation for
the solution, nor any probability theory.

The models examined in refs. 7 and 15 are purely non collisional. In
this paper, we are taking into account the rare collisions between molecules,
which has a regularizing effect for the approximation. We begin with the
model of ref. 15, with an additional linearized BGK collision operator, and
then apply the method of ref. 15. We prove that, when the time variable is
rescaled as t � \(=) where = is the mean free path, i.e., the mean distance
of free flight of the particles and \(=)=O(=), the following two different
asymptotical regimes can be observed:
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�� The collisional case, where the frequency of collision _>0 is inde-
pendent of =, which forces us to take \(=)==2, and which is a classical
diffusive limit.

�� The weakly collisional case, where _(=)== |ln =|: with &1<:<0,
which forces us to take \(=)==2 |ln _(=)|; in this case, we observe an
anomalous diffusive limit, where the mean square displacement per unit of
macroscopic time tends to infinity as |ln _(=)|.

2. SETTING OF THE PROBLEM AND MAIN RESULTS

Consider a rarefied gas of identical molecules confined between two
identical parallel plates; we shall be concerned with the case where the
distance between the plates is very small when compared to the size of the
plates. If the gas is rarefied enough, one can neglect the effect of inter-
molecular collisions in the container. The evolution of the density of
particles will be modelled by the BGK model and the interaction between
gas molecules and the plates, by the ``diffuse reflection'' condition (cf. ref. 10).
The density number of particles is denoted by F#F(t, x, y, z, vx , vy , vz) for
t�0, X=(x, y, z) # Dh=R_R_]0, h[ and v=(vx , vy , vz) # R3. In other
words, in an infinitesimal volume dX dv of the phase space Dh_R3

v at time
t one can find F(t, X, v) dX dv particules.

The evolution of the number density F is governed by the BGK model

�t F+v } {X F=_(MF &F ), X # Dh , v # R3 (2.1)

Here MF is a local Maxwellian distribution with the same density, in the
velocity space centered at * and u with covariance matrix TI. In the kinetic
theory, * represents the (macroscopic) density of the gas, u the bulk velocity
of the gas molecules and T the temperature of the gas. In other words

M(*, u, T )(v)=
*

(2?T )3�2 e&|v&u|2�2T (2.2)

The parameters *, u and T which are functions of t and X are given by the
relations:

*(t, X )=|
R 3

F(t, X, v) dv, *(t, X ) u(t, X )=|
R 3

vF(t, X, v) dv (2.3)

and

*(t, X ) T (t, X )= 2
3 |

R 3
|v&u(t, X )|2 F(t, X, v) dv (2.4)
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Finally _ is a positive constant which represents the inverse of the average
times of collision, or in other words the relaxation to the Maxwellian
position. The boundary condition of diffuse reflection is given by the
requirement that on the lower plate z=0

F(t, x, y, 0, v)=M(1, 0, Tp)(v)
�wz<0 F(t, x, y, 0, w) |wz | dw

�wz<0 M(1, 0, Tp)(w) |wz | dw
, vz>0 (2.5)

and on the upper plate z=h

F(t, x, y, h, v)=M(1, 0, Tp)(v)
�wz>0 F(t, x, y, 0, w) |wz | dw

�wz>0 M(1, 0, Tp)(w) |wz | dw
, vz<0 (2.6)

The temperature Tp models the temperature field on the plates; evidently
the conditions (2.5)�(2.6) are more idealised according to the complexity
gas�surface interaction, but are traditional in kinetic theory.

In what follows, we shall assume that the temperature Tp on the plates
is constant (in space and time). Furthermore, observe that, without loss of
generality, we may assume that Tp=1 in order to get asymptotical infor-
mation about the diffusion coefficient. We assume moreover that the gas is
almost at thermic equilibrium state with the plates, of averaging velocity
and density. In particular, we assume a negligable non linear effect. We are
forced to write the density F in the form of a pertubation of the Maxwellian
M

*
=M(*

*
, 0, Tp) , namely

F(t, X, v)=M
*

(v)(1+ f (t, X, v)) (2.7)

where *
*

denotes the average value of the macroscopic density of the gas.
Let us write the new equations satisfied by the new unknown f neglect-

ing the non linear terms. First, f satisfies linearized BGK equation around
Maxwellian position M

*
, namely (cf. ref. 10)

�t f +v } {X f =_(6 f & f ), X # Dh , v # R3 (2.8)

In (2.8), 6 denotes the orthogonal projection of L2(R3
v , M

*
dv) on

span[1, vx , vy , vz , |v| 2].
For the accommodation boundary conditions that describes the gas�

surface interaction in our model, substitute F=M
*

(1+ f ) into the condi-
tions (2.5)�(2.6). Since it is clear that

M(1, 0, Tp)

�wz<0 M(1, 0, Tp)(w) |wz | dw
=

M
*

�wz<0 M
*

(w) |wz | dw
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these conditions are written in the form

f (t, x, y, 0, v)=
�wz<0 f (t, x, y, 0, w) M (1, 0, Tp)(w) |wz | dw

�wz>0 M(1, 0, Tp)(w) wz dw
, vz>0 (2.9)

and

f (t, x, y, h, v)=
�wz>0 f (t, x, y, 0, w) M (1, 0, Tp)(w) wz dw

�wz>0 M(1, 0, Tp)(w) wz dw
, vz<0 (2.10)

Finally we prescribe an initial condition which is compatible with the
expected asymptotic dynamics. This initial condition is of the form:

f (0, X, v)= f0(X, v), X # Dh , v # R3 (2.11)

Scaling Laws. As the subject of this paper is concerned with the
analysis of the dynamical limit of particles in the case where the distance
between the plates is very small when compared to the size of the plates,
we shall make explicit in this section the condition on different scales of our
model. Precisely: it is assumed that the distance h between the ``plates'' is
small when compared to the characteristic length of the horizontal motion
(for example, the typical wavelengths in the horizontal Fourier modes of
the initial number density). This suggests the rescaling (x, y) � (x�=, y�=).
Note that, the number of collisions between a typical particle and the
plates per unit of unscaled time is O(1�=), and as the effect of each of these
collisions is to thermalise the particle (according to diffuse reflection relation),
it is natural that the limit will be of hydrodynamic type. Hence, in order
to observe a horizontal motion at large scale, it is logical to rescale the
time variable as t � \(=), where \(=)=O(=) as = � 0. But so far, we must
leave \(=) unspecified since we suspect an anomalous diffusion regime. The
rescaled equation (2.8) then takes the form

\(=) �t f=+=vx �x f=+=vy �y f=+vz �z f==_(6 f=& f=), X # Dh , v # R3

(2.12)

In what follows we shall consider = as a small parameter and the
frequency of the collision _ can be also small eventually. It is clear that
these scalings do not induce any modification in the boundary conditions,
namely f= still satisfies (2.9)�(2.10). For the initial data, we shall begin with
a regular independent density which is independent of the variables v and z.
It is of the form

f=(0, x, y, z, v)= f0(x, y), X # Dh , v # R3 (2.13)
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Main Results. We shall begin with the following notation:
Since M(1, 0, Tp) dv is the probability measure on R3, we denote by (,)

the average over this measure of any integrable function ,=,(v), namely:

(,)=|
R 3

,(v) M(1, 0, Tp) dv

Since (1�h) dz M(1, 0, Tp) dv is probability measure on ]0, h[_R3, we denote
by ((�)) the average over this measure of any integrable function �=
�(z, v), namely:

((�))=
1
h |

h

0
|

R 3
�(z, v) M(1, 0, Tp) dz dv

A simple computation shows that, under these notation, the projection
operator 6 can be written for any f # L2(R3, M

*
dv) as:

(6 f )(v)=( f ) +(vx f )
vx

Tp
+(vy f )

vy

Tp
+(vz f )

vz

Tp

+
1
6 �\

|v| 2

Tp
&3� f �\ |v| 2

Tp
&3+ (2.14)

The first main result of our paper is the following, as a notational
convention, in what follows we use _ to denote _h .

Theorem 2.1. Let _>0 fixed and f0 # L2(R2). Assume that \(=)==2.
Then

1. for all =>0, the system (2.9)�(2.10)�(2.12)�(2.13) has, in the sense
of distributions, a unique solution f= # L�(R+; L2(Dh_R3, M

*
dX dv));

2. when = � 0, f= � f in w-L�(R+; L2(Dh_R3, M
*

dX dv)) and in
L�

loc(R+; L2
loc(Dh_R3, M

*
dX dv)), where f is a solution of the horizontal

diffusion equation

�t f &
h

- 2?
ln \1

_ + (�xx+�yy) f =0, f (0, x, y)= f0(x, y) (2.15)

Note that, Theorem 2.1 deals with the collisional case. Our second
result is about the weakly collisional case, that is the case where we have
the anomalous diffusion. In this case, the convergence of f= to the local
equilibrium is not assured by the dissipative character of the collision
operator, since the frequency of collision _ goes to 0.
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Theorem 2.2. Let _== |ln =|:, : # ]&1, 0[. Assume that \(=)=
=2 |ln _(=)|. Then

1. for all =>0, the system (2.9)�(2.10)�(2.12)�(2.13) has a unique
solution f= # L�(R+; L2(Dh_R3, M

*
dX dv));

2. when = � 0, f= � f in w-L�(R+; L2(Dh_R3, M
*

dX dv)) and in
L�

loc(R+; L2
loc(Dh_R3, M

*
dX dv)) where f is a solution of diffusion equa-

tion. The diffusion coefficient is given by h�- 2? .

3. Moreover, the solution f= satisfies the following estimate

"|
t

0
f= ds&��|

t

0
f= ds��"L1(R+_Dh_R 3)

=O(= |ln _(=)| )+O(\(=)1�2 |ln(\(=))| 1�2) (2.16)

locally and uniformly in t # [0, T ].

The reader will refer to the appendix for the notation regarding spaces.
In this work we shall not dwell on the existence and uniqueness proof

of a solution for the Cauchy problem (2.9)�(2.10)�(2.12)�(2.13). Let us
only mention that the proof can be achieved by a simple contraction type
fixed point argument or by standard semigroup methods, as in ref. 3.

This section is concluded by an outline of the remainder of the paper:
The following section contains the proof of Theorem 2.1. It relies on the
conservation laws for mass. Section 4 is devoted to the study of the
``homological equation'' which allows us to control the choice of _(=) and
\(=). The proof of Theorem 2.2 is carried out in Section 5; it relies on a
compactness argument based on the velocity averaging lemma proved in
ref. 16.

3. CONSERVATION LAWS AND THE PROOF OF THEOREM 2.1

We start by writing the conservation laws for the system considered in
(2.9)�(2.10)�(2.12)�(2.13). The local conservation law of particles' density
number is given by

\(=) �t( f=)+= �x(vx f=)+= �y(vy f=)+�z(vz f=) =0 (3.1)

and the local non-increasing linearized entropy law can be written as:

1
2 \(=) �t( f 2

= )+ 1
2= �x(vx f 2

= )+ 1
2= �y(vy f 2

= )

+ 1
2 �z(vz f 2

= )+_( |(I&6 ) f= |2)=0 (3.2)
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It will be necessary to consider the average in z of relations (3.1) and (3.2)
above. Averaging over z of (3.1), we obtain:

\(=) �t (( f=)) += �x((vx f=)) += �y((vy f=)) =0 (3.3)

since the relations (2.9)�(2.10) imply that the net flux of particles on each
plate is null; in other words

(vz f=(t, x, y, 0, } ))=(vz f=(t, x, y, h, } )) =0 (3.4)

It will be convenient to introduce the following notation: For any function
, # L1(R3, M(1, 0, Tp) dv)

(,) +=|
R 3

,(v) M (1, 0, Tp)1vz>0 dv

(3.5)

(,) &=|
R 3

,(v) M (1, 0, Tp)1vz<0 dv

Averaging (3.2) in variable z, and taking into account the relations (2.9)�
(2.10), yields:

1
2

\(=) �t (( f 2
= ))+

1
2

= �x((vx f 2
= ))+

1
2

= �y((vy f 2
= ))+_(( |(I&6 ) f= |2))

+
1

2h _(vz f 2
= (t, x, y, h, } )) ++�vz

(vz f=(t, x, y, h, } )) 2
+

(vz) 2
+ �&&

&
1

2h _(vz f 2
= (t, x, y, 0, } )) &+�vz

(vz f=(t, x, y, 0, } )) 2
&

(vz) 2
+ �+&=0

(3.6)

We can transform the boundary terms above in such a manner that the
sign occurs:

(vz f 2
= (t, x, y, h, } )) ++�vz

(vz f=(t, x, y, h, } )) 2
+

(vz) 2
+ �&

=(vz) + _(vz f 2
=(t, x, y, h, } )) +

(vz) +

&\(vz f=(t, x, y, h, } )) +

(vz) + +
2

&�0

(3.7)
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and

&(vz f 2
=(t, x, y, 0, } )) &&�vz(vz f=(t, x, y, 0, } )) 2

&

(vz) 2
+ �+

=(vz) + _(vz f 2
=(t, x, y, 0, } )) &

(vz) &

&\(vz f=(t, x, y, 0, } )) &

(vz) & +
2

&�0

(3.8)

The fact that the above terms in the inequalities (3.7)�(3.8) are nonnegative
is a consequence of Jensen's inequality applied to the probability measure
vzM(1, 0, Tp)1vz>0 dv�(vz) + and vzM(1, 0, Tp) 1vz<0 dv�(vz) & .

Proof of Theorem 2.1. Integrating the relation (3.6) with respect to
the variables x, y # R and t # [0, T ], and taking into account the relations
(3.7)�(3.8), we get

1
2 || (( f 2

= (T, x, y, } , } ))) dx dy

+
_

\(=) ||| (( |(I&6 ) f=(t, x, y, } , } )|2)) dx dy dt

�
1
2 || (( f 2

0(x, y))) dx dy (3.9)

The relation (3.9) shows that the family ( f=) is bounded in L�(R+;
L2(Dh_R3; dx dy dz M(1, 0, Tp) dv)). This family is then relatively compact
in w-L�(R+; L2(Dh_R3; dx dy dz M (1, 0, Tp) dv)). Let f be the limit point
of any converging subsequence of ( f=); the relation (3.9) shows that
f # Ker(I&6). In other words, there exist functions of X and of t, a(t, X ),
bi (t, X ) for 1�i�3 and c(t, X ) such that

f (t, X, v)=a(t, X )+ :
3

i=1

bi (t, X ) vi+c(t, X ) |v2| (3.10)

Moreover, the transform equation (2.12) with \(=)==2, has the following
form

�t f=+
1
=

vx �x f=+
1
=

vy �y f=+
1
=2 vz �z f==

_
=2 (6 f=& f=), X # Dh , v # R3
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Since 6 is the orthogonal projection on the kernel of vz �z f, integrating
the last equation over all variables and multiplying by =2, show that f= is
independent of the variable z; hence

vz �z f =0 (3.11)

This result, together with (3.10) show that the functions a(t, X ), bi (t, X )
for 1�i�3 and c(t, X ) are in fact independent of the variable z. Finally,
relations (3.6)�(3.7) show that

_(vz f 2(t, x, y } )) +

(vz) +

&\(vz f (t, x, y } )) +

(vz)+ +
2

&=0 (3.12)

and

_(vz f 2(t, x, y, } )) &

(vz) &

&\(vz f (t, x, y, } )) &

(vz) & +
2

&=0 (3.13)

Since these two terms are the variances of f (t, x, y, } ) for the probabilities
vzM(1, 0, Tp)1vz>0 dv�(vz) + and vzM(1, 0, Tp) 1vz<0 dv� (vz) & respectively, we
deduce from (3.12)�(3.13) that f (t, x, y, } ) 1vz>0 and f (t, x, y, } ) 1vz<0 are
independent of v, which implies, because of (3.10), that f (t, x, y, } ) is inde-
pendent of v, namely the functions bi (t, X ) for 1�i�3 and c(t, X ) are
identically zero.

Now, let L be the unbounded operator on L2([0, h]_R3;
dz M(1, 0, Tp) dv) with the domain D(L) given by

D(L)={ f # L2([0, h]_R3; dz M(1, 0, Tp) dv) |

vz �z f # L2([0, h]_R3; dz M(1, 0, Tp) dv)

and f (0, v)=
(vz f (0, } )) &

(vz) &

, vz>0;

f (h, v)=
(vz f (h, } )) +

(vz) +

, vz<0=
and defined by

Lf =vz �z f +_( f &6 f ) (3.14)
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Also, define the unbounded operator L* on L2([0, h]_R3; dz M(1, 0, Tp) dv)
with the domain

D(L*)={ f # L2([0, h]_R3; dz M(1, 0, Tp) dv) |

vz �z f # L2([0, h]_R3; dz M dv)

and f (0, v)=
(vz f (0, } )) +

(vz)+

, vz<0;

f (h, v)=
(vz f (h, } )) &

(vz) &

, vz>0=
and defined by

L*f =&vz �z f +_( f &6 f ) (3.15)

First, we start by the observation that, if g1 and g2 are smooth functions
on [0, h]_R3, then

((g2Lg1))&((g1L*g2))=((vz �z(g1 g2)))

=(vzg1g2(h, } )) &(vzg1g2(0, } ))

Note that, this equality still holds if g1 , g2 , vz �zg1 and vz �zg2 #
L2([0, h]_R3).

Let g1 # D(L) and g2 # D(L*) as defined above; then

(vzg1(h, } )) +

(vzg2(h, } )) &

(vz) &

+(vzg2(h, } )) &

(vzg1(h, } )) +

(vz) +

=0 (3.16)

Similarly

&(vzg1(0, } )) &

(vz g2(0, } )) +

(vz) +

+(vzg2(0, } )) +

(vzg1(0, } )) &

(vz) &

=0 (3.17)

Hence, if g1 # D(L) and g2 # D(L*), we have

((g2Lg1))=((g1 L*g2))

This shows that L* is included in the adjoint of L.
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We will later prove the following result (cf. Section 4):

Lemma 3.1. There exist functions ;x # D(L*) and ;y # D(L*)
such that

L*;x=vx , L*;y=vy

We now finish the proof of Theorem 2.1. The relation (3.3) takes the
form

�t (( f=))+
=

\(=)
�x((L*;x f=)) +

=
\(=)

�y ((L*;y f=)) =0

or, using relations (3.16)�(3.17),

�t (( f=)) +
=

\(=)
�x((;x Lf=))+

=
\(=)

�y((;yLf=))=0 (3.18)

But the equation (2.12) shows that

Lf==&=vx �x f=&=vy �y f=&\(=) �t f=

so (3.18) can be rewritten as

�t (( f=))&
=2

\(=)
�x((vx;x �x f=))&

=2

\(=)
�y((vy;y �y f=))

== �x�t ((;x f=)) += �y �t((;y f=))

Since f is a w-L�(R+; L2(Dh_R3; dx dy dz M(1, 0, Tp) dv)) limit point of any
converging subsequence of ( f=), we deduce from (3.19) that, choosing

\(=)==2 (3.20)

yields

�t (( f ))&�x((vx;x)) �x f &�y((vy;y)) �y f =0 (3.21)

We also have the relation

f (0, x, y)= f0(x, y) (3.22)

on account of (2.16) and the fact that the family �t (( f=)) is bounded in
L�(R+; H&2(R2)), from (3.19).

614 Dogbe�



Finally

((vx;x))=_(( |(I&6 ) ;x |2)) &((vz �z(;2
x)))

=_(( |(I&6 ) ;x |2)) �0 (3.23)

since the boundary conditions on ;x impose that the net flux of ;x on each
plate is zero. In fact, the inequality (3.23) is strict: otherwise, we would
have ;x # Ker(I&6 ), in other words, ;x would be in the form of the right
side of (3.10) which contradicts the fact that L*;x=0. So, ((vx;x)) >0 as
well as ((vy ;y)) >0. The uniqueness of solutions of the Cauchy problem
(3.21)�(3.22) and the weak relative compactness of the sequence ( f=)
guarantees that the family f= converges to f in w-L�(R+; L2(Dh_R3;
dx dy dz M(1, 0, Tp) dv)). This completes the proof of Theorem 2.1. K

4. THE HOMOLOGICAL EQUATION AND THE PROOF
OF LEMMA 3.1

In this section, we introduce and study the ``homological equation.''
The terminology homological equation is borrowed from the averaging
theory of dynamical systems, see ref. 1. The idea of introducing this equation
has proved to be fruitful in many questions related to kinetic equations or
dynamical systems (see ref. 13). The homological equation is given by

{
&vz �z;x+_(I&6 ) ;x=vx , z # ]0, h[, vz # R, vx # R

;x(0, vx , vz)=
�wz>0 wz;x(0, w) M(1, 0, Tp)(w) dw

�wz>0 wz M(1, 0, Tp)(w) dw
, vx # R, vz<0

;x(h, vx , vz)=
�wz<0 |wz | ;x(h, w) M(1, 0, Tp)(w) dw

�wz>0 wz M(1, 0, Tp)(w) dw
, vx # R, vz>0

(4.1)

Lemma 4.1. For any _>0 and Tp>0, the system (4.1) has a
unique solution ;x # D(L*) with the average ((;_

x))=0, which is given by
the form ;_

x(z, v)=vx�_(z, vz). Moreover, one has the following asymptotic
equivalent

((vx;_
x)) t

h

- 2?
ln \1

_+ (4.2)
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with

&( |;_
x |)&L�([0, h])=O( |ln _| ), (( |;_

x |2)) =O(1�_) (4.3)

as _ � 0+.

Observe that Lemma 4.1 implies clearly Lemma 3.1 of the previous
section because of the symmetry between the variables vx and vy .

As mentioned in the introduction, we shall assume without loss of
generality that Tp=1, and we denote M=M(1, 0, 1) . So the projector operation
6 can be written as

6 f=( f )+ :
3

i=1

( f ivi ) vi+
1
6 ( ( |v|2&3) f )( |v|2&3) (4.4)

Proof of Lemma 4.1. The uniqueness is proved as follows. Let
b#b(z, v) # D(L*) be a solution of the homogeneous problem (4.1) (in
other words, the second side vx is replaced by 0). Multiplying system (4.1)
by b and integrating over all variables (using computations in (3.6) and
(3.7)) leads to

0=_(( |(I&6 ) b|2))

+
1
2h

(vz) + _(vzb2(0, } )) +

(vz) +

&\(vzb(0, } )) +

(vz) + +
2

&
+

1
2h

(vz) + _(vzb2(h, } )) &

(vz) &

&\(vzb(h, } )) &

(vz) & +
2

& (4.5)

The right hand side of (4.5) is the sum of three nonnegative or zero terms;
then (4.5) implies that each of these terms is zero. We then deduce first that
b # Ker(I&6 ), which implies, using the homogeneous problem (4.1) (i.e.,
with second side zero) that b is independent of z. The same argument as
in Section 3 (see formula (3.8) and the following section) shows that b
is reduced to a constant. But the condition ((b)) =0 implies b=0. This
proves the uniqueness part of the lemma.

Now, we prove the existence of solutions and the announced
asymptotic equivalent (4.2)�(4.3). Consider the auxilary problem

_�_&vz �z�_=1+_�� _(z)

{�_(0, vz)=0, vz<0 (4.6)

�_(h, vz)=0, vz>0
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where

�� _(z)=|
R

�_(z, vz) e&v 2
z �2 dvz

- 2?
(4.7)

We now write the integral expressions for (4.6). For vz<0,

�_(z, vz)=&|
z

0
e(_�vz )(z&t) 1

vz
(1+_�� _(t)) dt

=|
z

0
e&(_�|vz | )(z&t) 1

|vz |
(1+_�� (t)) dt (4.8)

and for vz>0,

�_(z, vz)=|
h

z
e&(_�vz )(t&z) 1

vz
(1+_�� _(t)) dt (4.9)

We then deduce a unique integral equation for the unknown �� _ (which is
known as Peierls Equation. This terminology comes from neutron transport
theory):

�� _(z)=|
z

0
(1+_�� _(t)) dt |

vz<0
e&(_�|vz | )(z&t) 1

|vz |
e&v 2

z �2 dvz

- 2?

+|
h

z
(1+_�� _(t)) dt |

vz>0
e&(_�vz )(t&z) 1

vz
e&v 2

z�2 dvz

- 2?
(4.10)

Introduce then the function

J(z)=|
vz>0

e&(1�vz ) z&v2
z �2 1

vz

dvz

- 2?
(4.11)

the relation (4.10) can be evidently written as

�� _(z)=|
h

0
(1+_�� (t)) J(_|z&t| ) dt (4.12)

We shall study the behaviour of J near of zero. Set u=1�vz

J(z)=|
�

0
e&zu&1�u2 du

- 2? u
�0 (4.13)
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At first, it is clear that

} |
1

0
e&zu&1�u2 du

u }=O(1) (4.14)

and then

J(z)=O(1)+
1

- 2? |
�

1
e&zu&1�u 2 du

u
(4.15)

Now

|
�

1
e&zu&1�u2 du

u
�|

�

1
e&zu du

u
=|

�

z
eu du

u
=O( |ln z| ) (4.16)

as z � 0+. Therefore

J(z)=O( |ln z| ) as z � 0+ (4.17)

Then, let K_ be the integral operator defined by

(K_ f )(z)=_ |
h

0
J(_ |z&t| ) f (t) dt, 0�t�h (4.18)

The relation (4.17) shows that

0�_J(_ |z&t| )�C - _ |z&t|&1�2

so K_ is a bounded operator on L�([0, h]) with norm &K_&=O(- _ ).
Indeed

sup
z # [0, h]

|
h

0
| f (t)| |z&t| &1�2 dt�& f_&L�([0, h]) sup

z # [0, h]
|

h

0
|z&t|&1�2 dt

=2 & f_&L�([0, h]) sup
z # [0, h]

(- z +- h&z )

�4 - h & f_&L�([0, h]) (4.19)

There exists _0>0 such that, for any 0<_<_0 , &K_&<1�2, we have

�� _= :
n�0

K n
_( f_) (4.20)
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where

f_(z)=|
h

0
J(_ |z&t| ) dt, 0�z�h (4.21)

Consequently, for any 0<_<_0 ,

&�� _&L�([0, h])�& f_&L�([0, h]) :
n�0

&K n
_&

�2 & f_&L�([0, h]) (4.22)

and (4.17) shows that

& f_&L�([0, h])=O( |ln _| ) (4.23)

We deduce from (4.22) and (4.21) that, for 0<_<_0 , the problem (4.12)
has a solution �� _ # L�([0, h]) satisfying

&�� _&L�([0, h])=O( |ln _| ) (4.24)

Now we estimate �2
_(z, vz). There exists a constant C>0 such that, for

0<_<_0 , we have

�2
_(z, vz)=\|

h

z
e&(_�vz )(z&t) 1

vz
(1+_�� (t)) dt+

2

�(1+C_ |ln _| )2 \|
h

z
e&(_�vz )(z&t) dt

vz+
2

(4.25)

We have also an explicit formula for the integral appearing in the right
hand side of (4.24)

|
h

z
e&(_�vz )(z&t) dt

vz
=

1
_ |

h&z

0
e&(_�vz ) ! _

dz
vz

=
1
_

(1&e&(_�vz )(h&z))

Consequently

|
h

0
|

R

�_(z, vz)2 e&v 2
z�2 dvz dz

�(1+C_ |ln _| )2 |
h

0
|

�

0

1
_2 (1&e&(_�vz )(h&z))2 e&v 2

z �2 dz dvz (4.26)
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The change of variables %=_(h&z)�vz leads to

|
h

0
|

�

0

1
_2 (1&e&(_�vz )(h&z))2 e&v2

z �2 dz dvz

=
1
_ |

h

0 \|
�

0
(1&e%)2 e&_ 2(h&z)2�2 d%

%2+ (h&z) dvz

As 0�e&_ 2(h&z)2�2%2
�1, the dominated convergence theorem shows that,

for _ � 0,

|
h

0
|

�

0

1
_

(1&e&(_�vz )(h&z))2 e&v 2
z�2 dz dvz � |

h

0 \|
�

0
(1&e%)2 d%

%2+ (h&z) dvz

More precisely

|
h

0
|

�

0

1
_2 (1&e&(_�vz )(h&z))2 e&v 2

z�2 dz dvzt
1
_

h2

2 |
�

0
(1&e%)2 d%

%2 (4.27)

We have thus proved, for _>0 small enough, the existence of a solution
�_ of (4.6) satisfying (4.23) as

|
h

0
|

R

�_(z, vz)2 e&v2
z �2 dz dvz=O(1�_) (4.28)

from (4.25)�(4.26). The existence of ;_
x satisfying (4.2)�(4.3) follows

immediately. K

5. CONVERGENCE TO THE LOCAL EQUILIBRIUM AND THE
PROOF OF THEOREM 2.2

The proof of Theorem 2.2 followed closely the proof of Theorem 2.1
with some extra technical complications arising from the fact that the con-
vergence of f= to the local equilibrium is not assured by the dissipative
character of the collision operator, since the frequency of collision _ goes
to 0, as already mentionned in Section 2. On the contrary, the convergence
to local equilibrum is a consequence of the diffusion reflection on the
surfaces and the fact that the distance between the plates is very small. We
then followed the arguments of the Section 3 by indicating the necessary
modifications.
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The continuity equation (3.18) can be stated in the form

�t (( f=)) &
=2

\(=)
�2

x((vx;x f=))&
=2

\(=)
�2

y((vy;y f=))

== �x �t ((;x f=))+= �y�t ((;y f=)) (5.1)

To start with, we must write a relation connecting _ to = expressing the fact
that the right hand side of (5.1) tends to 0 with =. Therefore

|((;x f=)) |�(( |;_
x |)) sup

0<=<1

& f=&L�(R +_Dh_R 3)

�O( |ln _(=)| ) sup
0<=<1

& f=&L�(R +_Dh_R 3) (5.2)

and

|((;y f=)) |�(( |;_
y |)) sup

0<=<1

& f=&L�(R +_Dh_R 3)

�O( |ln _(=)| ) sup
0<=<1

& f=&L�(R +_Dh_R 3) (5.3)

First, we shall show that

sup
0<=<1

& f=&L�(R +_Dh_R3)<+� (5.4)

In order to prove (5.4), we write Eq. (2.12) in the form

�t f=+\ =
\(=)

vx�x+
=

\(=)
vy�y+

1
\(=)

vz�z+ f==
_(=)
\(=)

(6&I ) f= (5.5)

and set

A=
=

\(=)
vx�x+

=
\(=)

vy�y+
1

\(=)
vz�z , B=6&I, and S(t)=e&tA (5.6)

Now, using the following equivalent integral representation of (5.5) and
(2.13) given by Duhamel's principle, we get:

f=(t, . , . , . )=S=(t) f0+|
t

0
S=(t&s)

_(=)
\(=)

Bf=(s) ds (5.7)
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Observe that the formula

e&t(A+B)&e&tA=|
t

0

d
ds

(e&sAe&(t&s)(A+B)) ds

=&|
t

0
e&sABe&(t&s)(A+B) ds (5.8)

is true for any bounded operators A and B. This formula also remains true
for semi-groups. Since S(t) is a contraction in L�([0, h]_R3), we have

e&t(A&(_(=)�\(=)) B)=e&tA+|
t

0
e&(t&s) A _(=)

\(=)
Be&s(A&(_(=)�\(=)) B) ds (5.9)

from which it follows that

&e&t(A&(_(=)�\(=)) B)&L�

�C &e&tA&L�+|
t

0
&e&(t&s) A&L�

_(=)
\(=)

&B&L� &e&s(A&(_(=)�\(=)) B)&L� ds
(5.10)

Note that

&e&tA&L��1, and &e&(t&s) A&L��1

therefore

&e&t(A&(_(=)�\(=)) B)&L��1+
_(=)
\(=)

&B&L� |
t

0
e&s(A&_((=)�\(=)) B) ds (5.11)

From Gronwall's lemma we obtain

&e&t(A&(_(=)�\(=)) B)&L��e(_(=)�\(=)) &B& t, on [0, \(=)�_(=)] (5.12)

More precisely, setting M=e(_(=)�\(=)) &B& t, we have & f=&L��M & f0&L� .
Arguing as above, changing f= into & f= and writing the boundary limit of
&f0�0, we obtain f=�0, a.e. on R+_R2_[0, h]_R3; which completes
the proof of the estimate (5.4).

The choice of _(=) and \(=). The right hand side of (5.1) converges
to 0 in the sense of distributions, provided

= |ln _(=)| � 0, as = � 0 (5.13)
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Hence, if _(=) satisfy (5.13) and

=2

\(=)
|ln _| � }, as = � 0

where } is some constant, we have

�t (( f=)) &
h

- 2?
(�2

x(( f=)) +�2
y(( f=)) ) � 0 (5.14)

in H &3
loc (R+_R2). Indeed, recall the continuity equation in the form

�t (( f=)) &
=2

\(=)
�2

x((vx;x(z, v)( f=)(t, x, y, z)))

&
=2

\(=)
�2

y((vy;y(z, v)( f=)(t, x, y, z)))

== �x�t ((;x f=))+= �y�t ((;y f=))

+
=2

\(=)
�2

x((vx;x(z, v)( f=&( f=) )))

+
=2

\(=)
�2

y((vy;y(z, v)( f=&( f=) )))

The maximum principle allows us to write:

& f=&L��C (5.15)

Hence

=((;x f=)) �=(( |;x |)) C=O(= |ln _| ) (5.16)

and

=((;y f=))�=(( |;y |)) C=O(= |ln _| ) (5.17)

On the other hand

&vx ;_
x&L2(t, x, y, v)=O \ 1

- _+ , & f=&( f=)&L2(t, x, y, v)=O \�\
_+ (5.18)
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Therefore

|
�

0
dt |

R

dx \ =2

\(=)
|((vx;x( f=&( f=) ))) |+

2

�|
T

0
|

R

=4

\2(=)
(( (vx;x)2))(( ( f=&( f=) )2)) dx dt (5.19)

and by symmetry,

|
�

0
dt |

R

dy \ =2

\(=)
|((vy;y( f=&( f=) ))) |+

2

�|
T

0
|

R

=4

\2(=)
(( (vy ;y)2))(( ( f=&( f=) )2)) dt dy (5.20)

Since

(( (vx;x)2))=
=2

_2\
, and (( (vy ;y)2)) =

=2

_2\

The relations

\(=)=O(=2), - \(=)=O(=)

imply

=2

\(=)
((v.;.(z, v)( f=&( f=) )))

=
=2

\(=)
}
- \(=)

_(=)
� 0 and = |ln _(=)| � 0, as = � 0

Hence, to relate _ to =, we must choose the function _(=) so as to satisfy

= |ln _| � 0, =4=O(\_2),
=2

\(=)
|ln _| � }, as = � 0 (5.21)

Combining these relations leads to

\(=)=O(=), =2(ln _)tC\, =4=O(\_2) (5.22)
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Besides, Eqs. (5.21) can be rewritten as

= |ln _|=O(1), =2=O(_2 |ln _| ), \(=)=O(=) (5.23)

From this, it follows easily that

\(=)t=2 ln _(=) (5.24)

Put :(=)=- _(=) and _(=)== |ln =|:; then, as = � 0, we have

|ln(_(=))|t |ln =| (5.25)

In order to satisfy (5.23), we must have :<0. Hence, if there exists _(=)
satisfying (5.23), we necessarily have

\(=)t=2 |ln _(=)|, as = � 0

which completes the choice of _(=) and \(=).

Taking the Limit. Write the second term of the continuity equation
in the form

=2

\(=)
((vx;x(z, v)( f=)(t, x, y, z))) =

=2

\(=)
(vx;_

x)(z)( f=)(t, x, y, z) (5.26)

Taking into account Lemma 4.1, we have:

=2

\(=)
(vx;_

x)(z) ( C�� _(z) in L�([0, h]) (5.27)

where

C= lim
= � 0 _

=2

\(=)
|ln _| } |

R

v2
xe&v2

x �2 dvx

- 2?& (5.28)

and

�� _(z)=|
R

�_(z, vz) e&v2
z �2 dvz

- 2?
(5.29)

Besides, (1�|ln _| ) �� _(z) is bounded in L�([0, h]), (1�|ln _| ) �� _(z) ( �� _(z)
in w-L�([0, h]) and ( f=)(t, x, y, z) ( ( f )(t, x, y, z) in w-L�. Let
/(t, x, y) be a test function independent of z. We have
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vz

2?
�z |

+�

0
|

R4
/(t, x, y) f=(t, x, y, z, v) e&(v 2

x +v2
y )�2 dt dx dy dvx dvy

=&
1

2? |
+�

0
|

R 4
/(t, x, y)(�t+vx�x+vy�y) f=e&(v 2

x +v 2
y )�2 dt dx dy dvx dvy

&
1

2? |
+�

0
|

R 4
/(t, x, y) _( f=&( f=) ) e&(v 2

x +v2
y )�2 dt dx dy dvx dvy (5.30)

Now, set

F==|
+�

0
|

R4
/(t, x, y) f=(t, x, y, z, v) G(vx , vy) dt dx dy dvx dvy (5.31)

where G being a Gaussian. The computation of vz �zF= gives:

vz�zF==|
+�

0
|

R 2
dt dx dy vz�z /(t, x, y) |

R 2
f=G(vx , vy) dvx dvy

+|
+�

0
|

R 2
dt dx dy |

R2
G(vx , vy) dvx dvy

_/(t, x, y)[&\(=) �t f=&=vx�x f=&=vy �y f=&_( f=&( f=) )]

(5.32)

Integrating by parts the second term of (5.32) leads to

|
+�

0
|

R 2
dt dx dy |

R 2
G(vx , vy) dvx dvy /(t, x, y)

_[&\(=) �t f=&=(vx �x+vy�y) f=&_( f=&( f=) )]

=|
R2

G(vx , vy) dvx dvy |
+�

0
|

R2
dt dx dy

_[\(=) �t/+(= �x/+= �y/) f=&/_( f=&( f=) )] (5.33)

Since

f= # L�, �t / # L�, �x/ # L�, �y/ # L� (5.34)

we have

&\(=) �t /+=((�x+�y) /) f=&L�=O(1) (5.35)
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as well as �z /(t, x, y) # C�
c and

"|
+�

0
|

R 2
dt dx dy vz�z/(t, x, y) |

R2
f= G(vx , vy) dvx dvy"L�(]0, h[_R)

=O(1)

(5.36)

Besides, the last term of (5.33) gives

&_( f=&( f=) )&L2(R +_R_R 3)=O(- \_ ) (5.37)

Finally we deduce that

vz�zF= is bounded in L�([0, h]_Rvz
) and

F= is bounded in L�([0, h]_Rvz
) (5.38)

Then, using the Velocity Averaging Lemma (see ref. 16) we get that

|
R

F=e&v2
z �2 dvz

- 2?
converge uniformly to

|
+�

0
|

R 2
/(t, x, y)( f (t, x, y)) dt dx dy (5.39)

which completes the part of taking the limit.
To prove the last part of Theorem 2.2, integrating Eq. (2.12) over the

variable t we obtain

vz�z |
t

0
f= ds+_ |

t

0
( f=&6 f=) ds

=&\(=)( f=(t, . , . , . , . , . , . )& f0(t, . ))&= |
t

0
vx�x f= ds&= |

t

0
vy�y f= ds

(5.40)

Since the problem (2.12)�(2.13) is invariant by translation, the relation
(5.12) implies

&�x f=&L�(R +_R 2_[0, h]_R3)+&�y f=&L�(R +_R 2_[0, h]_R 3)

�e(_(=)�\(=)) &B& t(&�x f0&L�+&�y f0&L�) (5.41)
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From the estimate

&_( f=&6 f=)&L�(R +_R 2_[0, h]_R3)�C=: (5.42)

the relation (5.40) gives

"vz�z | f= ds+_ |
t

0
( f=&6 f=) ds"L�(R +_R 2_[0, h]_R 2)

=O(=) (5.43)

uniformly in t # [0, T ]. Applying the Velocity Averaging Theorem in
dimension 1, i.e., Lemma 7 of ref. 16 leads to

�} |
t

0
f=(s, x, y, z$, . , . , . , ) ds&|

t

0
f=(s, x, y, z, . , . , . , ) ds }�=O(= |ln =| )

(5.44)

uniformly in t>0, x # R, y # R and z, z$ # [0, h].
Now start with the observation that if + is a positive measure such

that +(x)=1, we have

| \ f &| f d++
2

d+=| f 2 d+&2 | f d+ | f d++| d+ \| f d++
2

=| f 2 d+&\| f d++
2

Multiplying Eq. (2.12) by f= and integrating over all variables and figurating
the sign, leads to

1
2 \(=) �t ||

R3_Dh

f=
2M dv dx dy dz+0+_|R3

f 2
= vzM dvz dx dy&

h

0

+||
R3_Dh

_( f=
2&( f=

2) ) M dv dx dy dz=0 (5.45)

Set

f=(x, y, 0, v) |vz>0=
�vz<0 f=(x, y, 0, v) |vz | M dv

�vz>0 vz M dv
=( f=) &

and

f=(x, y, 0, v) |vz<0=( f=) +
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At the origin, write

& 1
2 ||

R 3_R 2
( f 2

= &( f=) 2
&) |vz | M dv dx dy=&1

2 C0 |
R2

dx dy( f 2
= &( f=) 2

&)

where

C0=|
vz<0

|vz | M dv

and ( f=) 2
& is a probability. But

& 1
2 ||

R3_R 2
( f 2

= &( f=) 2
&) |vz | M dv dx dy

=&1
2 C |

R 2
dx dy( ( f=&( f=) &)2) &

where C is some constant.
On the other hand,

|
T

0

1
2 \|vz<0

|vz | M dv+_|R 2
dx dy( ( f= |z=h

&( f=) +|z=h
)2) +

+|
R 2

dx dy( ( f= |z=h
&( f=) &|z=h

)2) && dt

� 1
2 \(=) ||

R 3_Dh

f 2
= (0, x, y, z, v) M dv dx dy dz

=C0 \(=) (5.46)

Now, note that

C0 |
T

0
dt |

R2
dx dy(( ( f= |z=h

&( f=) +|z=h
)2) ++( ( f= |z=0

&( f=) &|z=0
)2) &)

�C\(=) (5.47)

Let

g==|
t

0
f= ds=O(1) in L�([0, T ]) (5.48)
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Therefore

vz�zg=+_(I&6 ) g== &\(=)( f=(t)& f=(0))&=vx{xg=

=O(=) in L�([0, T ])

and

( | g=(z)& g(z$)|) =O(= |ln =| )

uniformly in t # [0, T ], x, y # R, vx , vy # R, z, z$ # [0, h].
Now, observe that

|
R 2

(( | g=(z)&((g=(z))) |)) dx dy

�|
R2

(( | g=(z)& g=(0))) |)) dx dy

+|
R 2

(( | g=(0)&((g=(0))) |)) dx dy

+|
R 2

(( |((g=(0))) &((g=(z))) |)) dx dy (5.49)

On the other hand, we have

|
R2

(( | g=(z)& g=(0)|)) dx dy

+|
R 2

(( |(g=(0))) &((g=(z))) |)) dx dy=2O(= |ln =| ) (5.50)

and

|
R 2

(( | g=(0)&((g=(0))) |)) dx dy

=|
R2

(( | g=(0)& 1
2 ((g=(0))) && 1

2 ((g=(0))) + |)) dx dy

=|
R2

(( | g=(0)& 1
2 ((g=(0))) & |)) & dx dy

=O(\(=)1�2 |ln(\(=))|1�2) (5.51)
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Combining (5.44)�(5.50) and (5.51) we thus obtain

|
R 2

(( | g=(z)&((g=(z))) |)) dx dy=O(= |ln =| )+O(\(=)1�2 |ln(\(=))| 1�2)

as announced. This completes the proof of Theorem 2.2. K

APPENDIX

Throughout this article, many basic topological linear spaces are
utilized. Some of our notation regarding these spaces is standard while
some of it is less so. These spaces, as well as our notation for them, are
described below. A comprehensive treatment of them can be found in many
references, for example ref. 14.

Let E be any normed linear space; & }&E denotes its norm and E*
denotes its dual space. We shall use the notation w-E to indicate the space
E equipped with its weak topology, that is the coarsest topology on E for
which each of the linear forms

u [ (w; u) E*, E for w # E*

is continuous. Here ( } ; } ) E*, E is the natural bilinear form relating E*
and E.

Let (X, M, dm) be a measure space and E a normed linear space.
For every 1� p��, we shall use the abbreviated notation L p(dm; E ) for
Bochner space L p((X, M, dm); E ) whenever there is no danger of confu-
sion; we shall also use L p(dm) to denote the same space whenever E is a
power of R.

When Y is locally compact and dm is a Borel measure, we shall denote
by L p

loc(dm; E ) (or L p
loc(dm)) the space determined by the family of semi-

norms

u [ \|K
&u( y)& p

E dm( y)+
1�p

for compact K/Y
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